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Prescribed Automorphism Groups 

By E. Seah and D. R. Stinson 

Abstract. In this paper we use orderly algorithms to enumerate (perfect) one-factoriza- 
tions of complete graphs, the automorphism groups of which contain certain prescribed 
subgroups. We showed that, for the complete graph K12, excluding those one-factoriza- 
tions containing exactly one automorphism of six disjoint cycles of length two, there are 
precisely 56391 nonisomorphic one-factorizations of K12 with nontrivial automorphism 
groups. We also determined that there are precisely 21 perfect one-factorizations of K14 
that have nontrivial automorphism groups. 

1. Introduction. A one-factorization (OF) of a complete graph K2n is a par- 
tition of the edge-set of K2n into 2n - 1 one-factors, each of which contains n edges 
that partition the vertex-set of K2n. 

Although it is well known that there exists an OF of K2n for every positive integer 
n [5], the problem of determining N(2n), the number of pairwise nonisomorphic 
OFs of K2n, appears to be a difficult one. Wallis [16] gave a lower bound for N(2n) 
and showed that N(2n) > 2 for n > 4. Later, Lindner et al. (see [9]) and Cameron 
(see [1] and [2]) proved that N(2n) goes to infinity with n. The best known lower 
bound on N(2n) is derived by Cameron in [2]. He proved the following result. 

THEOREM 1. 1. For sufficiently large nonnegative n, there holds ln N(2n) 
2n2 In 2n. 

In fact, the exact values of N(2n) are only known for a few small values of n, as 
stated in the following theorem. 

THEOREM 1 .2. For 2n = 2,4, and 6, there is a unique one-factorization of 
K2n (up to isomorphism). There are precisely 6 nonisomorphic one-factorizations 
of K8 and 396 nonisomorphic one-factorizations of K10. 

N(8) = 10 is proved in [3] and [15] and N(10) = 396 is shown in [4]. 
A perfect OF is an OF in which every pair of distinct one-factors forms a Hamil- 

tonian cycle of the graph. Denote Np(2n) to be the number of nonisomorphic 
perfect OF of K2n. As in the case of N(2n), the exact values of Np(2n) are only 
known for a few small values of n: 

THEOREM 1.3. For 2n = 2,4,6,8, and 10, there is a unique perfect one- 
factorization of K2n (up to isomorphism). There are precisely 5 nonisomorphic 
perfect one-factorizations of K12 [10]. 
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In [13], we enumerated nonisomorphic OFs and Howell designs for the graph K10 
minus a one-factor. In [14], we constructed some perfect OFs of K14. The methods 
used in the two papers are very similar and are known as orderly algorithms. In 
using these algorithms, we construct only nonisomorphic OFs, by eliminating iso- 
morphic structures as they are being constructed. The same algorithms could be 
used to enumerate the OFs of K12. However, the number of intermediate (noniso- 
morphic) structures grows at such an astronomical rate that a complete enumera- 
tion of N(12) (or Np(14)) is not feasible at this point in time. Consequently, we 
modified the orderly algorithms in [13] and [14] to restrict our enumeration to OFs 
of K12, and perfect OFs of K14, that contain certain subgroups in their automor- 
phism groups (these algorithms are described in the remainder of this paper). We 
proved the following results. 

THEOREM 1.4. There are precisely 56391 nonisomorphic one-factorizations of 
K12 that have automorphism groups which are nontrivial and do not consist of 6 
disjoint cycles of size 2. 

THEOREM 1 .5. There are precisely 21 nonisomorphic perfect one-factorizations 
of K14 having nontrivial automorphism groups. 

For those readers who are interested in orderly algorithms, we recommend the 
paper by Read [12]. 

2. Definitions and Preliminaries. To explain the orderly algorithms used in 
this paper, we need the following definitions. 

We first need to define orderings on edges, one-factors, etc, of K2n. All orderings 
are defined lexicographically. 

Suppose the vertices are numbered 1, . . . , 2n. We define an edge to be an ordered 
pair (p,p') with 1 < p < p' < 2n. Then given two edges e1 = (pi, p) and 
e2 = (p2,p'2), we say e1 < e2 if either of the following is true: (1) P1 < P2, (2) 

P1 = P2 and pl < P. We define a one-factor f as an ordered set of edges, i.e., 
f = (el, e2, . . , en), where ei < ej whenever i < j. 

Let A be any subgroup of S2n, the symmetric group of 2n elements. The one- 
factors of K2n must form disjoint orbits under the action of the group A. We are 
only interested in those orbits which contain edge-disjoint one-factors. We say these 
are the eligible orbits under the action of A. 

We order the one-factors in an orbit 0 = (fi, f2l f3,... , fk) such that fi < fj 
whenever i < j. We say that fi is the representative of the orbit and write fi = 

rep(O). We define L(O) = k to be the length of the orbit 0. 
We are now ready to define orderings on orbits and OFs. For two orbits 01 

and 02, we say 01 < 02 if rep(O0) < rep(02). An OF F is then written as 
a list of orbits (O1, 02,...O,,O), where Oi < Oj whenever i < j. Note that 

El<i<m L(Oi) = 2n - 1. 
A partial OF Fi = (O1, 02,... O Oi) is written as a list of i orbits. We also define 

R = El<j<i L(Oj) to be the rank of Fi. Note that when R = 2n - 1, we have a 
(complete) OF. 

Let Ui be the set of all one-factors containing the edge (1, i + 1). We say that 
a partial OF F, = (O1, 02,... I Oi) is proper if it contains one one-factor from each 
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of U1, ... , Uk where rep(0) contains the edge (1, k + 1). It is not difficult to see 
that if Fj = (O1, 02,..., Oi) is proper, and 1 < j < i, then Fj(1, 02,..., Oj) is 
also proper. Also, note that any (complete) OF is proper. 

For two proper partial OFs Fi = (01, 02, .. , Oi) and Gi = (P1, P2, .. ., Pi) that 
have the same number of orbits i, we say that Fj < Gi if there exists an integer k 
(1 < k < i) such that rep(01) = rep(Pi) for all I < k and rep(Ok) < rep(Pk). 

A proper partial OF Fj is said to be A-canonical if Fj' > Fi for all a E M(Fj), 
where M(Fi) = {a: a E S2n, and a maps any orbit of Fj into an orbit of the 
same length}. A one-factorization Fj that is A-canonical is in general not canon- 
ical as defined in [13] and [14], since the eligible orbits (one-factors) depend on 
the prescribed group A. (Some one-factors may not belong to any eligible or- 
bits.) Given an A-canonical OF F, we can determine its canonical form by, for 
example, mapping all the one-factors of F into the smallest one-factor of K2n, 
((1, 2), (3, 4),.. ., (2n - 1, 2n)). The smallest OF resulting from these mappings is 
the canonical representation of F (see [13]). 

It is easy to see that if two proper partial OFs of rank R (not necessarily having 
the same number of orbits), Fj and Gj, are distinct and are both A-canonical, then 

Fj and Gj are nonisomorphic. Also, if Fj = (O1, 02,..., Oi) is A-canonical, and 
1 < j < i, then Fj = (01, 02,..., Oj) is also A-canonical. 

Let N(A) be the normalizer group of A within S2n; that is, N(A) = {ir: ir-1Air 
= A, ir E S20}. It is easy to see that ir E N(A) maps any eligible orbit into an 
eligible orbit of the same length. It should be noted that for a given Fj we have 
that N(A) < M(Fj), and in general IN(A)l < IM(Fi)l. 

We say Fj is quasi-A- canonical if Fi > Fi for all a E N(A). A quasi-A-canonical 
Fj may not be A-canonical, since it is possible to have the situation where all the 
mappings that take Fj into an isomorphic copy are not in N(A) (for example, refer 
to case 20 of Table 3). 

3. Orderly Algorithms. In this section we outline the orderly algorithms that 
were used to obtain the results of this paper. These algorithms are modifications 
of the algorithms described in [13] and [14]. 

There are two ways to generate the OFs: the breadth-first and the depth-first 
algorithms, as described in the following paragraphs (see also [13] and [14]). We use 
N(A) instead of M(Fi) (for a given Fj) to eliminate isomorphic structures, for the 
following two reasons: (1) the number of mappings to be performed is significantly 
reduced; (2) recalculation of M(Fi) is avoided when Fi changes. However, the OFs 
thus generated are not necessarily nonisomorphic. An additional step is therefore 
required to identify and eliminate the isomorphic copies of these OFs: We first find 
the canonical representation of these OFs, and then delete any duplications. 

(a) Breadth-first algorithm: The following pseudo-code describes how to gen- 
erate Fj+1 from Fi, where Fj is the set of all proper partial OFs containing 
i orbits that are quasi-A-canonical. Note that Fo = {0}. 

Fi+j =0; 
FOR each F, E Fi DO 
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Determine the smallest integer j such that the edge (1, j + 1) is not 
in Fi; 
FOR each orbit 0 whose representative is in Uj DO 

IF the one-factors of 0 are disjoint from the one-factors in Fi 
THEN 

FOR each ir E N(A) DO 
(1) compute OX and F17; 
(2) IF F1l U {Or} < Fi U {O} THEN 

Fi U {O} is not canonical, discard it and go on to 
next 0; 

{Here Fly U {Or} > Fi U {O} for all ir, save Fi U {O} for the 
next step.} 
Fi+1 = Fi+1 U {Fu U {O}}. 

(b) Depth-first algorithm: The following recursive pseudo-code outlines how to 
generate from a given Fi all quasi-A-canonical OFs extending Fi: 

PROCEDURE Depth-first (Fi) 

Determine the smallest integer j such that the edge (1, j + 1) is not in Fi; 
IF j = 2n + 1 THEN 

Fi is a quasi-A-canonical OF; 
ELSE 

FOR each orbit 0 whose representative is in Uj DO 
IF the one-factors of 0 are disjoint from the one-factors of Fi THEN 

IF F7 U {O} > Fi U {O} for all ir E N(A) THEN 
Depth-first (Fi U {O}). 

We remark that when A is the trivial group of order one, all one-factors are 
eligible orbits of length one. Consequently, these two algorithms reduce to the 
orderly algorithms described in [13] and [14]. In this case, we would obtain the 
complete enumeration of the OFs of K2n 

Note that the algorithms above can be easily modified for subclasses -of OFs 
that may be of interest. For example, to enumerate perfect OFs, we modify the 
algorithms so that pairs of distinct one-factors are both disjoint and Hamiltonian. 

4. One-Factorizations of K12. Let a be a permutation of {1, .... 12} and 
define A = (a). The generator a of the cyclic group A on 12 elements can have 
one of 77 different cycle structures (refer to Table 2). Many of these cases can be 
eliminated easily by the following general results on the cycle structure of automor- 
phisms of OFs of K2n- 

LEMMA 4.1. If a is an automorphism of an OF of K2n, then the number of 
fixed points in a is even or equals 1. 

Proof. Suppose the number of fixed points of a is 2k + 1 (k > 1), and let the 
fixed points be P1i P2, P3.... * P2k+1. Consider the one-factor f containing the edge 
{P1,P2 Then f must be an orbit of length one. But then there exists an edge 
{pi, qj} (qj is not a fixed point) in f which maps into an edge of another one-factor; 
hence a contradiction. 5 
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LEMMA 4.2. If a is an automorphism of K2n and has more than n fixed points, 
then the number of fixed points in a is 2n. 

Proof. Let the number of fixed points be 2k, where 2k > n. Then there exists 
an edge of two fixed points in every one-factor of the OF. Every one-factor is thus 
an orbit of length one. Consequently, each one-factor has k edges made up of the 
2k fixed points and it is impossible to have an edge of the form {pi, qj}, where pi 
is a fixed point and qj is not a fixed point (except the case when all the points in 
a are fixed points). 5 

LEMMA 4.3. If a is an automorphism of an OF of K2n and has exactly n fixed 
points, then the remaining n points of a must appear as disjoint 2-cycles. 

Proof Consider the one-factors that are fixed by a. Each of these one-factors 
has n/2 edges made up of fixed points, so there are exactly n - 1 such one-factors. 

The remaining n one-factors consist of edges of the form {pi, qj }, where pi is a 
fixed point and qj is not a fixed point. Therefore, all edges made up of nonfixed 
points, {qi, qj}, must appear in the n - 1 fixed one-factors. Consequently, the 
nonfixed points can only appear as disjoint 2-cycles in a. 0 

COROLLARY. If n =2 (mod 4), n > 2, then the number of fixed points in a is 
not equal to n. 

Proof. Consider the n - 1 one-factors that are fixed by a. Each of these one- 
factors has n/2 edges from the n points in the 2-cycles. Since n _ 2 (mod 4), each 
of these one-factors must have at least one edge of the form {c1, c2 }, where ci and 
c2 appear in the same 2-cycle. Now there are n/2 2-cycles (edges) to be filled in 
these n - 1 one-factors. So (n/2) > (n - 1), or n < 2. o 

LEMMA 4.4. If a is a nonidentity automorphism of an OF of K2n and has no 
fixed points, then the number of 3-cycles in a does not equal 1. 

Proof. Consider a 3-cycle (b c d). Edges {b, c}, {c, d}, and {d, b} appear in 3 
distinct one-factors forming an orbit of length 3. Thus we have 

{b, c} {c, d} I {d, b} l {b, c} 

{d, x} {b, y} {c, z} {d, x}; 

and (x y z) is another 3-cycle. O 

LEMMA 4.5. Let a be an automorphism of an OF of K2n. If the number of 
fixed points in a is even and nonzero, and the remaining points form a cycle, then 
there must be exactly two fixed points in a. 

Proof. Let the number of fixed points be 2k, then the number of nonfixed 
points is 2n - 2k and they form a cycle (qi q2 q3 ... q2n-2k). Consider the one- 

factors containing the edge {p,, pj } made up of fixed points: There are 2k - 1 of 

these one-factors. There is only one way that the nonfixed points may appear in 
these 2k - 1 one-factors: They must appear as edges {q1;qn-k+1}, {q2,qn-k+2}, 

Jq31 qn-k+3 } i ... * and {qn-k q2n-2k}. Thus 2k - 1 = 1 and hence the number of 
fixed points is two. 5 
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LEMMA 4.6. Let a be an automorphism of an OF of K2n. If there is a 2-cycle 
(b c) in a, then the OF has an orbit of length one. 

Proof. The one-factor containing the edge {b, c} must be fixed by a. 5 

COROLLARY. If a has exactly one fixed point, then there cannot be an 2-cycles 
mn a. 

Proof. If a has exactly one fixed point, then there does not exist any one-factor 
fixed by a. Consequently, there cannot be any 2-cycles in a. 5 

LEMMA 4.7. Let a be an automorphism of an OF of K2n. If a has two cycles 
of lengths Li and L2 (L1 < L2), then LCM(L1, L2) < 2n - 1. 

Proof. Let the L1-cycle be denoted (P1 P2 ... PL1), and the L2-cycle be denoted 
by (qi q2 .. . qL2). Since L1 : L2, the one-factor f containing the edge {pl,qi} is 
in an orbit of length greater than one. So f maps into another one-factor contain- 
ing the edge {P2, q2 }, which in turn maps into the one-factor containing the edge 
{p3, q3 }, and so on. Thus the one-factor containing {Pi, qi } is in an orbit of length 
LCM(L1, L2). Hence LCM(L1, L2) < 2n - 1. 5 

THEOREM 4.8. There are at most 18 cycle structures of a that admit OFs for 
K12 . 

Proof. Using Lemmas 4.1 to 4.7, we eliminated all but 29 cases (refer to Table 
2). Of these 29 cases, we can eliminate 11 further cases, by observing that a' for 
some n > 1 is not an admissible automorphism. As an example, for case 24, a has 
cycle structure 6132. But then a3 has cycle structure 2316, which is case 74 and is 
ruled out by the corollary to Lemma 4.3. 

For those cases that are not eliminated by the above lemmas and hence may 
admit OFs, we resort to the help of computer. We implemented the two algorithms 
in PASCAL/VS on the Amdahl/580 computer at the University of Manitoba. All 
the cases in Table 2 except cases 71 and 77 are dealt with in this paper. For cases 
72 and 73, we first used the breadth-first algorithm to construct F4, then extended 
the proper partial OFs in F4 to complete OFs by the depth-first algorithm. For 
the other cases, only the depth-first algorithm was used. 

Both cases 71 and 77 require a large amount of computing time. Case 77 is 
equivalent to a complete enumeration of the OFs of K12, which is out of our reach 
at this point in time. Case 71 involves constructing OFs containing automorphisms 
of six 2-cycles. Instead of dealing with case 71 in its entirety, we looked at the 
subproblem of the enumeration of OFs that contain two automorphisms of six 2- 
cycles. That is, we have A = (a,, a2), where a, = ((1 2)(3 4)(56)(78)(9 10)(11 12)) 
and a2 = (1 3) (2 4) (5 7) (6 8) (9 11) (10 12)). (It turns out that, up to isomorphism, 
this is the only admissible case for given a,.) We refer to this as case 78 in Table 3. 
Similar to cases 72 and 73, we used the combination of breadth-first and depth-first 
algorithms. 

Therefore, we have enumerated all OFs of K12 except those containing exactly 
one automorphism of six 2-cycles and those with the trivial automorphism group. 

In Table 3 we list the cases that admit at least one OF and the associated 
statistics. It is interesting to note that there are 6 cases where N(A) did not 
eliminate all the isomorphic OFs (cases 20, 44, 46, 47, 73 and 78). 



ONE-FACTORIZATIONS OF COMPLETE GRAPHS 613 

Interested in finding out what mappings would have eliminated these isomorphic 
OFs, we looked into case 20, where 30 pairs of isomorphic OFs survived the test of 
N(A). Here, A = ((1 2 3 4 5 6) (7 8 9 10 11 12)). 

Of these 30 pairs of OFs, 6 of them have the full automorphism groups of order 
12, and 21 have order 24. The automorphism groups of these 27 pairs of OFs each 
contain a unique cyclic subgroup B = ((135)(246)(7911)((8 10 12)). Since B is 
unique, any a that takes an OF into its isomorphic copy must also map B into B; 
that is, a E N(B). Thus, if we use N(B) instead of N(A), we would be able to 
eliminate the 27 isomorphic OFs. 

Each of the remaining 3 pairs of OFs has a full automorphism group of order 
48, and each has 4 copies of Z3 in its automorphism group. In each of these three 
cases, there exists an a E N(B) which takes an OF into is isomorphic copy. Here 
again, using N(B) would have eliminated the 3 isomorphic OFs. 

It should be emphasized that, in general, we do not know what the full automor- 
phism groups look like beforehand. Consequently, the best strategy is perhaps to 
use the normalizer of the prescribed subgroup N(A) to obtain the quasi-A-canonical 
OFs, followed by testing these OFs for isomorphism. The statistics on K12 indi- 
cates that N(A) is able to get rid of most of the isomorphic OFs. We would like 
to point out that, in certain situations, however, the normalizer of the prescribed 
group N(A) is sufficient to eliminate isomorphic OFs; that is, quasi-A-canonical 
OFs are nonisomorphic in these cases. This result is as follows (see [8] and [11]): 

THEOREM 4.9. Suppose two OFs F an G of Kn+i contain Zn in their au- 
tomorphism groups, where n is an odd prime or the product of two distinct odd 
primes. If F is isomorphic to G, then F' = G for some a E N(Zn). 

Thus for A = Z11, the OFs of K12 constructed with the use of N(A) are non- 
isomorphic (case 2 in Tables 2 and 3). 

TABLE 1 
Frequency distribution of the orders of automorphism groups of OFs of K12 

Order No. 

2 > 39706 
3 669 
4 14801 
5 92 
6 245 
8 610 

10 10 
11 2 
12 138 
16 76 
20 2 
24 25 
32 4 
48 6 
55 1 

110 1 
240 2 
660 1 

56391 
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Table 1 gives the distribution of the orders of automorphism groups for the OFs 
of K12 constructed in this p")er. Note that the numbers in Table 1 are exact, with 
the exception of the number of OFs of order 2. 

The CPU time for all cases dealt with in this paper, except 72, 73 and 78, added 
up to about 40 minutes. Case 72 took 7.5 hours, case 73 needed 30 hours, and case 
78 consumed about 17 hours. These timings include the final step to determine the 
canonical representations and eliminate the isomorphic OFs. 

5. Perfect One-Factorizations of K14. The algorithms outlined in Section 
2 were also used to construct perfect OFs of K14, and some results were reported 
in [14]. Here, we give a complete report of our findings. 

We were able to prove that there are exactly 21 perfect OFs of K14 with non- 
trivial automorphism groups. In fact, the algorithms described in this paper helped 
find 6 new perfect OFs (sets 16-20 in [14], and set 21 in Table 5), in addition to 
the 11 new perfect OFs found by the orderly algorithms in [14]. 

We started by looking at the cycle structure of the generator a of the cyclic 
group on 14 elements. In total, there are 135 possibilities. Many of them can be 
eliminated easily. In fact, Ihrig proved in [6] that the cycle structure of a must be 
one of the forms given in the following lemma. 

LEMMA 5. 1. If a is an automorphism of a perfect OF of K2n, then its cycle 
structure must be one of the four forms: (1) 12k(2n-2)/k, (2) llk(2n-1)/k, (3) k2n/k, 

or (4) 2lk(2n-2)/k 

Proof. See [6, Corollary 3.4]. 5 

THEOREM 5.2. There are at most 13 cycle structures of a that admit perfect 
OFs for K14. 

Proof. By Lemma 5.1, there are at most 14 cycle structures of a that admit 
perfect OFs for K14. These are: 

(1) 141 (2) 13111 (3) 12121 (4) 12112 (5) 72 (6) 6221 (7) 6212 

(8) 4 21 (9) 43 12 (10) 3421 (11) 34 12 (12) 27 (13) 2612 (14) 114. 

Case (10) can be eliminated since a3 has the form 21112, which is not admissible. El 
We list in Table 4 those cases that admit at least one perfect OF for K14 and 

the associated statistics. As in K12, we omit the case involving the trivial automor- 
phism (case 14). In total, approximately 10 hours of computer time was required 
for the remaining 12 cases (including the time required to determine the canonical 
representation of the perfect OFs constructed). 

Of special interest is case 12 (where a = ((1 2)(3 4) ... (13 14))). It is not difficult 
to see that the seven edges from the seven 2-cycles of a must either (i) appear in 
the same one-factor, or (ii) appear in seven distinct one-factors. An OF of type 
(i) would have one orbit of one-factors of length 1 and six orbits of length 2, and 
type (ii) would have seven orbits of length 1 and three orbits of length 2. In 
using orderly algorithms for these two subcases, we omit canonicity testing (645120 
mappings would have been needed for each Ft), and test the OFs for isomorphism 
after they have been created. 
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TABLE 2 

Cycle structures of admissible automorphisms of OFs of K12 

Case Cycle Eliminated by Case Cycle Eliminated by 
no. structure lemma no. structure lemma 

1 12' 2 11'11 
3 1012' 4 10112 
5 9131 4.4 6 912'1' 4.7 
7 9113 4.1 8 8141 
9 813111 4.7 10 8122 

11 812112 12 8114 4.5 
13 7151 4.7 14 714111 4.7 
15 713121 4.4 16 713112 4.7 
17 712211 4.6 18 712113 4.1 
19 7115 4.1 20 62 
21 615111 4.7 22 614121 4.7 
23 614112 4.7 24 6132 a3(case 74) 
25 61312111 4.6 26 613113 4.1 
27 6123 a2(case 65) 28 612212 a2(case 65) 
29 612114 a2(case 65) 30 6116 4.3 
31 5221 a5(case 76) 32 5212 

33 514131 4.4 34 51412111 4.6 
35 514113 4.1 36 513211 4.7 
37 513122 4.4 38 51312112 4.7 
39 513 14 4.7 40 512311 4.6 
41 512213 4.1 42 512115 4.1 
43 5117 4.1 44 43 
45 423'11 4.7 46 4222 
47 422112 48 4214 
49 413221 4.7 50 413212 4.7 
51 41312211 4.6 52 4'3'2'13 4.1 
53 4'3'15 4.1 54 4124 a2(case 75) 
55 412312 a2 (case 75) 56 412214 a2 (case 75) 
57 412116 4.3 58 4118 4.2 
59 34 60 332'11 4.6 
61 3313 4.1 62 3223 a3(case 74) 
63 322212 a3(case 75) 64 322114 a3(case 76) 
65 3216 4.3 66 3'2 41 4.6 
67 312313 4.1 68 312215 4.1 
69 3'2' 17 4.1 70 3'19 4.1 
71 26 72 2512 
73 2414 74 2316 4.3 
75 2218 4.2 76 21110 4.2 
77 112 

In [6], Ihrig defined a P element to be an automorphism of n 2-cycles of a perfect 
OF of K2n, the cycles of which form the edges of a one-factor of the perfect OF. 
Thus, an OF of type (i) contains a P element. Ihrig observed that, other than 
the perfect OF of K4, there is no other example known of a perfect OF of K2n 
containing a P element. Our computer search did not find any perfect OF of type 
(i) for K14, suggesting that perhaps perfect OFs of K2n containing a P element do 
not exist for n > 2. 
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There are 165 perfect OFs of type (ii), of which 4 are nonisomorphic. The 

information on the number of orbits and distinct one-factors listed in Table 4 for 

case 12 pertains to type (ii). 

It is interesting to note that, except for case 12, the quasi-A-canonical perfect 

OFs constructed from each of the other cases turn out to be nonisomorphic (that 

is, they are also A-canonical). 

We list in Table 5 the perfect OF of K14 (set 21) that was not reported in [14]. 

In [6] and [7], Ihrig studied the order of full automorphism groups of perfect OFs 

of K2n (see also [14]). The automorphism groups of the 21 perfect OFs of K14 (see 

[14] and Table 5) give examples of every possible group order permissible by the 

results of Ihrig (except order 1). 

TABLE 3 

One-factorizations of K12 containing prescribed automorphism groups 

Quasi-A-canonical OF A-canonical OF 

Case Cycle IN(A)l No. of No. of Total Not in In Not in In 

no. struc- distinct distinct prev. prev. prev. prev. 

ture orbits 1-factors cases cases cases cases 

of a (1) (2) (3) (4) (5) 

1 121 48 19 79 6 6 0 6 0 

2 11111 110 25 275 5 5 0 5 0 

3 10121 80 17 81 3 2 1 2 1 

4 10112 80 57 561 7 6 1 6 1 

11 812112 128 133 1033 12 12 0 12 0 

20 62 144 221 1073 297 287 10 227 8 

32 5212 400 905 4505 109 97 12 97 12 

44 43 768 709 2557 390 381 9 376 8 

46 4222 512 399 1551 76 74 2 64 2 

47 422112 256 565 2213 328 291 37 273 31 

48 4214 1536 783 3087 222 173 49 173 49 

59 34 3888 1953 5805 1086 850 236 850 236 

72 2512 7680 2561 5041 5676 5665 11 5665 11 

73 2414 9216 1803 3531 38751 38029 722 37063 598 

78 26 x 26 2304 399 927 13341 11572 1769 11572 695 

Total 56391 

(1) =(2) + (3). 
(2)-(4) gives the number of isomorphic OFs (not appearing in previous cases) 

which are not eliminated by N(A). 
(3)-(5) gives the number of isomorphic OFs (appearing in previous cases) 

which are not eliminated by N(A). 
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TABLE 4 

Perfect one-factorizations of K14 containing prescribed automorphism groups 

--- Nonisomorphic OF --- 
Case Cycle JN(A)J No. of No. of total 
no. structure distinct distinct gene- set no. in [14] 

of a orbits 1-factors rated 

1 141 84 12 63 1 set 1 
2 13111 156 1 13 1 set 13 
4 12112 96 25 289 3 sets 13,14,15 
5 72 294 565 3913 1 set 1 
7 6212 288 1399 8359 12 sets 1,3-6,9-15 
9 4312 1536 4621 18445 5 sets 9,10,13,14,15 

11 3412 7776 15579 46683 17 sets 1,3-6, 9-20 
12 27 645120 23880 46920 4 sets 1, 2, 3, 21(Table 5) 
13 2612 92160 32395 64659 15 sets 1-15 

TABLE 5 

Perfect one-factorization of K14 (set 21) 

JAI =2. 
A = (a); 
a= (1 4)(2 5)(3 7)(6 10)(8 12)(9 13)(11 14) 
a induces (f2 f7)(f6 f12)(fg f14) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 3 2 5 4 7 6 9 8 11 10 13 12 14 
1 4 2 6 3 8 5 10 7 12 9 14 11 13 
1 5 2 4 3 9 6 11 7 13 8 12 10 14 
1 6 2 14 3 5 4 8 7 9 10 11 12 13 
1 7 2 10 3 12 4 5 6 13 8 14 9 11 
1 8 2 11 3 6 4 12 5 14 7 10 9 13 
1 9 2 13 3 10 4 11 5 12 6 8 7 14 
1 10 2 3 4 6 5 7 8 13 9 12 11 14 
1 11 2 9 3 7 4 14 5 13 6 12 8 10 
1 12 2 7 3 13 4 10 5 11 6 14 8 9 
1 13 2 12 3 14 4 9 5 8 6 10 7 11 
1 14 2 8 3 11 4 13 5 9 6 7 10 12 
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